Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide.
نویسندگان
چکیده
Inhibitors of the G(2) DNA damage checkpoint can selectively sensitize cancer cells with mutated p53 to killing by DNA-damaging agents. Isogranulatimide is a G(2) checkpoint inhibitor containing a unique indole/maleimide/imidazole skeleton identified in a phenotypic cell-based screen; however, the mechanism of action of isogranulatimide is unknown. Using natural and synthetic isogranulatimide analogues, we show that the imide nitrogen and a basic nitrogen at position 14 or 15 in the imidazole ring are important for checkpoint inhibition. Isogranulatimide shows structural resemblance to the aglycon of UCN-01, a potent bisindolemaleimide inhibitor of protein kinase C beta (IC(50), 0.001 micromol/L) and of the checkpoint kinase Chk1 (IC(50), 0.007 micromol/L). In vitro kinase assays show that isogranulatimide inhibits Chk1 (IC(50), 0.1 micromol/L) but not protein kinase C beta. Of 13 additional protein kinases tested, isogranulatimide significantly inhibits only glycogen synthase kinase-3beta (IC(50), 0.5 micromol/L). We determined the crystal structure of the Chk1 catalytic domain complexed with isogranulatimide. Like UCN-01, isogranulatimide binds in the ATP-binding pocket of Chk1 and hydrogen bonds with the backbone carbonyl oxygen of Glu(85) and the amide nitrogen of Cys(87). Unlike UCN-01, the basic N15 of isogranulatimide interacts with Glu(17), causing a conformation change in the kinase glycine-rich loop that may contribute importantly to inhibition. The mechanism by which isogranulatimide inhibits Chk1 and its favorable kinase selectivity profile make it a promising candidate for modulating checkpoint responses in tumors for therapeutic benefit.
منابع مشابه
High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide.
Treatment of cancer cells lacking p53 function with G2 checkpoint inhibitors sensitizes them to the toxic effects of DNA damage and has been proposed as a strategy for cancer therapy. However, few inhibitors are known, and they have been found serendipitously. We report the development of a G2 checkpoint inhibition assay that is suitable for high-throughput screening and its application to a sc...
متن کاملBis-imide granulatimide analogues as potent Checkpoint 1 kinase inhibitors.
Granulatimide and isogranulatimide, natural products isolated from an ascidian, were found to be abrogators of the cell cycle G2-M phase checkpoint by inhibition of Checkpoint 1 kinase (Chk1). In the course of structure-activity relationship studies on granulatimide analogues, we have synthesized a series of bis-imides, in which the imidazole moiety was replaced by an imide heterocycle. Various...
متن کاملAn indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage.
Many cancer therapies cause DNA damage to effectively kill proliferating tumor cells; however, a major limitation of current therapies is the emergence of resistant tumors following initial treatment. Cell cycle checkpoints are involved in the response to DNA damage and specifically prevent cell cycle progression to allow DNA repair. Tumor cells can take advantage of the G2 checkpoint to arrest...
متن کاملMarine Pyrrolocarbazoles and Analogues: Synthesis and Kinase Inhibition
Granulatimide and isogranulatimide are alkaloids obtained from marine sources which have been shown to inhibit cell-cycle G2-checkpoint, targeting more particularly checkpoint 1 kinase (Chk1). At a structural level, they possess a characteristic pyrrolocarbazole framework also shared by the well-known rebeccamycin and staurosporine microbial metabolites which have been described to inhibit topo...
متن کاملRecovery from DNA damage checkpoint arrest by PP1-mediated inhibition of Chk1.
The G2 DNA damage checkpoint delays mitotic entry via the upregulation of Wee1 kinase and the downregulation of Cdc25 phosphatase by Chk1 kinase, and resultant inhibitory phosphorylation of Cdc2. While checkpoint activation is well understood, little is known about how the checkpoint is switched off to allow cell cycle re-entry. To identify proteins required for checkpoint release, we screened ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 3 10 شماره
صفحات -
تاریخ انتشار 2004